Munc18 and Munc13 regulate early neurite outgrowth
نویسندگان
چکیده
BACKGROUND INFORMATION During development, growth cones of outgrowing neurons express proteins involved in vesicular secretion, such as SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) proteins, Munc13 and Munc18. Vesicles are known to fuse in growth cones prior to synapse formation, which may contribute to outgrowth. RESULTS We tested this possibility in dissociated cell cultures and organotypic slice cultures of two release-deficient mice (Munc18-1 null and Munc13-1/2 double null). Both types of release-deficient neurons have a decreased outgrowth speed and therefore have a smaller total neurite length during early development [DIV1-4 (day in vitro 1-4)]. In addition, more filopodia per growth cone were observed in Munc18-1 null, but not WT (wild-type) or Munc13-1/2 double null neurons. The smaller total neurite length during early development was no longer observed after synaptogenesis (DIV14-23). CONCLUSION These data suggest that the inability of vesicle fusion in the growth cone affects outgrowth during the initial phases when outgrowth speed is high, but not during/after synaptogenesis. Overall, the outgrowth speed is probably not rate-limiting during neuronal network formation, at least in vitro. In addition, Munc18, but not Munc13, regulates growth cone filopodia, potentially via its previously observed effect on filamentous actin.
منابع مشابه
Regulation of syntaxin1A-munc18 complex for SNARE pairing in HEK293 cells.
The formation and dissolution of SNARE protein complexes is essential for Ca(2+)-triggered fusion of neurotransmitter-filled vesicles at the presynaptic membrane. Among the pre-synaptic SNARE proteins, the activation of the Q-SNARE syntaxin1A is a critical event for SNARE complex formation. Activation requires syntaxin1A to transit from a munc18-bound non-interacting state to one competent for ...
متن کاملAutoinhibition of Munc18-1 modulates synaptobrevin binding and helps to enable Munc13-dependent regulation of membrane fusion
Munc18-1 orchestrates SNARE complex assembly together with Munc13-1 to mediate neurotransmitter release. Munc18-1 binds to synaptobrevin, but the relevance of this interaction and its relation to Munc13 function are unclear. NMR experiments now show that Munc18-1 binds specifically and non-specifically to synaptobrevin. Specific binding is inhibited by a L348R mutation in Munc18-1 and enhanced ...
متن کاملMunc13-1 and Munc18-1 together prevent NSF-dependent de-priming of synaptic vesicles
Synaptic transmission requires a stable pool of release-ready (primed) vesicles. Here we show that two molecules involved in SNARE-complex assembly, Munc13-1 and Munc18-1, together stabilize release-ready vesicles by preventing de-priming. Replacing neuronal Munc18-1 by a non-neuronal isoform Munc18-2 (Munc18-1/2SWAP) supports activity-dependent priming, but primed vesicles fall back into a non...
متن کاملReconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release.
Neurotransmitter release depends critically on Munc18-1, Munc13, the Ca(2+) sensor synaptotagmin-1, and the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptors (SNAREs) syntaxin-1, synaptobrevin, and SNAP-25. In vitro reconstitutions have shown that syntaxin-1-SNAP-25 liposomes fuse efficiently with synaptobrevin liposomes in the presence of synaptotagmin-1-Ca(2+...
متن کاملModulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative
Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...
متن کامل